Interact and run this jupyter notebook online:
$\implies$ make sure you installed all the required python packages (see the README)!
Finally, also find this lecture rendered as HTML slides on github $\nearrow$ along with the source repository $\nearrow$.
Relativistic particle of rest mass $m_0$ at velocity $\mathbf{v}$ features momentum
$$p=|\mathbf{p}|=|\gamma m_0 \mathbf{v}| = \gamma m_0 \beta c$$where
$$\begin{align} c&\text{: speed of light in vacuum,}\qquad &c&\doteq 2.998\times 10^8 \text{m/s} \\ \beta&\text{: particle speed in units of }c,\qquad&\beta&\doteq |\mathbf{v}/c| < 1 \\ \gamma&\text{: relativistic Lorentz factor,}\qquad &\gamma&\doteq\cfrac{1}{\sqrt{1 - \beta^2}} > 1 \end{align}$$Total energy defined by
$$E_\text{tot}=\gamma m_0 c^2$$and related to momentum $p$ by the relativistic equation
$$E_\text{tot}^2=\bigl(m_0c^2\bigr)^2 + (pc)^2$$Utilise electromagnetic fields $(\mathbf{E},\mathbf{B})$ to exert Lorentz force $\mathbf{F}_L$ on particle of charge $q$:
$$\frac{d\mathbf{p}}{dt} = \mathbf{F} = q\,(\mathbf{E}+\mathbf{v}\times\mathbf{B})$$Deriving relativistic equation by time $t$ and using definition of $E_\text{tot}$:
$$\implies E_\text{tot} \frac{dE_\text{tot}}{dt} = c^2\cdot\mathbf{p}\cdot \frac{d\mathbf{p}}{dt} = c^2\cdot \mathbf{p}\cdot\mathbf{F}_L$$$$\stackrel{/E_\text{tot}}{\implies} \frac{dE_\text{tot}}{dt} = \mathbf{v}\cdot\mathbf{F}_L = q\cdot \mathbf{v}\cdot(\mathbf{E}+\underbrace{\mathbf{v}\times \mathbf{B}}\limits_\text{cancels}) = q\cdot \mathbf{v}\cdot\mathbf{E}$$i.e. the total energy can only be increased by electric field components!
Particle moves along path length $s$ with velocity
$$\mathbf{v}_s = \frac{d\mathbf{s}}{dt}$$Variation of particle energy along $s$ ("$\approx$"$\rightarrow$ paraxial approximation):
$$\implies \frac{dE_\mathrm{tot}}{ds} = \frac{1}{v_s} \frac{dE_\mathrm{tot}}{dt} = q \cdot \frac{\mathbf{v}}{v_s}\cdot \mathbf{E} = q \cdot \Bigl(\underbrace{\frac{v_z}{v_s}}\limits_{\mathop{\approx}1}E_z + \underbrace{\frac{v_x}{v_s}}\limits_{\mathop{\approx}\frac{dx}{ds}\mathop{\equiv}x'}\cdot E_x + \underbrace{\frac{v_y}{v_s}}\limits_{\mathop{\approx}\frac{dy}{ds}\mathop{\equiv}y'}\cdot E_y \Bigr)$$$$\implies\left\{\begin{array}\, x',~y'&\text{: transverse momenta or slopes, small }\leftrightarrow\text{transverse electric fields have weak impact} \\ E_z&\text{ : longitudinal electric field most efficient to provide }\cfrac{dE_\mathrm{tot}}{ds} \end{array}\right.$$3 typical ways to supply $E_z$:
DC field (single passage!)
AC field: travelling wave rf cavities
$\rightarrow$ ultra-relativistic particles (typically electrons)
AC field: resonator / standing wave rf cavities:
$\rightarrow$ most versatile standard (International Linear Collider project: 35 MV/m)
Particles travel through rf cavity in vacuum: piece of metal enclosing an empty volume!
$\implies$ boundary conditions $\leftrightarrow$ electromagnetic discrete solutions $\mathbf{E}_n(\mathbf{r})$ to Maxwell equations, resonating modes!
Each resonating mode identified by index $n$, characterised by field amplitude maps $\mathbf{E}_n(\mathbf{r}),\mathbf{B}_n(\mathbf{r})$ and oscillating at RF frequency $f_n=\omega_n/2\pi$!
$\mathbf{E}_n$ satisfies the boundary conditions! At given time $t$, total electric field in cavity given by:
$$\mathbf{E}(\mathbf{r}, t) = \sum\limits_{n} e_n(t) \cdot \mathbf{E}_n(\mathbf{r})$$where $e_n(t)$ is the field time variation (can be modelled by RLC circuit i.e. damped harmonic oscillator equation).
image from B. Holzer
Often use Finite Integration Technique (cf. other lectures) to compute $\mathbf{E}_n(\mathbf{r}),\mathbf{B}_n(\mathbf{r})$ for given rf cavity geometry based on Maxwell equations:
$$\left\{\begin{array}\, \nabla \cdot \mathbf{E} &= \frac{\rho}{\epsilon_0} \\ \nabla \times \mathbf{E} + \frac{\partial\mathbf{B}}{\partial t} &= \mathbf{0} \\ \nabla \cdot \mathbf{B} &= 0 \\ \nabla \times \mathbf{B} - \frac{1}{c^2} \frac{\partial\mathbf{E}}{\partial t} &= \mu_0 \mathbf{j} \end{array}\right\} \quad\text{with bound. cond.}\quad \left\{\begin{array}\, \mathbf{n}\cdot \mathbf{E}_n &= \frac{\sigma}{\epsilon_0} \\ \mathbf{n}\times \mathbf{E}_n &= \mathbf{0} \\ \mathbf{n}\cdot \mathbf{B} &= 0 \\ \mathbf{n}\times (\mu\cdot\mathbf{B}_n) &= \mathbf{K} \end{array}\right\}$$where $\mathbf{n}$ is normal to the conductor surface, $\sigma$ the charge surface density and $\mathbf{K}$ the current surface density.
$\implies$ choose one $\mathbf{E}_n$ as accelerating mode with optimal $E_z$ component along cavity axis (often TM${}_{010}$), optimise cavity geometry, mode is excited by injecting rf power via coupler!
image from J. Le Duff
Consider only accelerating mode excited in cavity. Particle travelling along cavity axis $s$ while time $t$ passes:
$$E_z(s, t) = E_{z,0}(s) \cdot \sin\bigl(\omega_\text{rf}\, t + \varphi_s\bigr)$$Here, $\varphi_s$ refers to synchronous phase at arrival of "synchronous" reference particle. Total cavity voltage is given by:
$$V_0 = \int\limits_{-\infty}^{+\infty} ds\cdot|E_{z,0}(s)|$$Hypothetical maximum energy gain is $\Delta W = |q|\cdot V_0$ for particle of charge $q$.
$\implies$ Real $\Delta W$ reduces due to inevitable field variation during gap transit. Transit-time factor:
$$ T = \frac{\text{energy gain of particle with }v=\beta c}{\text{maximum energy gain (particle with }v\rightarrow\infty\text{)}} \leq 1 $$A priori, energy gain is associated with particle velocity change, i.e. exact $T$ depends on $d\beta$ during passage through rf cavity.
For synchrotrons, effect of velocity change is typically negligible to determine energy gain ($\Delta W\propto\Delta\gamma$):
$$\frac{d\beta}{\beta} = \frac{1}{\beta^2\gamma^2} \cdot \frac{d\gamma}{\gamma}$$$\implies$ two scenarios where approximation of $T$ independence of $\Delta\beta$ applies:
$$\left\{\begin{array}\, \gamma \gg 1 &\text{: particle is already ultra-relativistic} \\ \Delta\gamma \ll \beta\gamma &\text{: energy gain in cavity is much smaller than particle momentum} \end{array}\right.$$Consider uniform standing wave with $E_{z,0}(s)=V_0/g=\mathrm{const}$ across gap width $g$ (zero field outside), at crest of rf wave, i.e. $\varphi_s=\pi/2$:
$$E_z(s, t) = \frac{V_0}{g} \,\cos(\omega_\text{rf}\,t)$$The synchronous particle travels along $s=\beta c t$ (assuming constant $v=\beta c$) and picks up an actual maximum energy gain
$$\implies \Delta W = \cfrac{q V_0}{g}\int\limits_{-g/2}^{+g/2} ds\cdot \cos\left(\cfrac{\omega_\text{rf}\,s}{\beta c}\right)$$and the transit-time factor becomes:
$$T = \left| \cfrac{\sin\left(\cfrac{\omega_\text{rf} g}{2\beta c}\right)}{\cfrac{\omega_\text{rf} g}{2\beta c}} \right| \quad \implies\quad T\rightarrow 1 \Leftrightarrow \left\{\begin{array}\, g \rightarrow 0 \\ \omega_\text{rf} \rightarrow 0 \\ \beta c \rightarrow \infty \end{array}\right.$$$\implies$ reduction in effective energy gain ($T<1$) is mostly relevant for low-energy protons and ions!
Design / reference energy increases as determined by synchronous phase $\varphi_s$,
$$\Delta W_0 = q V\cdot\sin(\varphi_s)$$with the effective rf voltage $V = V_0 T$.
Real particles travel at a longitudinal distance $z = s - \beta c t$ to synchronous particle. They experience the rf kick at phase $\varphi = \omega_\text{rf}\,t = \varphi_s - \cfrac{\omega_\text{rf} z}{\beta c}$. Corresponding energy gain is $\Delta W = q V\cdot \sin(\varphi)$.
Expressed as an energy distance $\Delta E$ to the synchronous particle, $\Delta E=E_\text{tot} - E_{\text{tot},0}$, the discrete energy update of an arbitrary particle passing through an rf cavity becomes
$$\begin{align} \Delta E|_\text{after} &= \Delta E|_\text{before} + \Delta W - \Delta W_0 \\ &= \Delta E|_\text{before} + q V\cdot \bigl(\sin(\varphi) - \sin(\varphi_s)\bigr) \end{align}$$from config import np, plt, plot_rfwave
from scipy.constants import m_p, e, c
%matplotlib inline
Phase focusing principle (classical regime):
plot_rfwave();
S. Earnshaw (1839), Trans. Camb. Phil. Soc. 7 97
$\implies$ application to rf accelerators: always one direction in 3D which is defocused!
Real $\mathbf{E}$ field across gap in rf cavities has transverse component when off axis, classical regime:
$\implies$ DC field leads to net focusing effect (due to gain in longitudinal momentum), but AC field in case of stable longitudinal motion: net defocusing effect (rise in voltage during passage)
$\implies$ typically very weak vs. quadrupole fields and hence often neglected for synchrotrons
Constant dipole field $B$ to steer reference particle around corner at bending radius $\rho$:
$$\begin{align} F_\text{centrip} &= F_\text{L} \\ \frac{\gamma m_0 v^2}{\rho} &= |q| v B \end{align}$$"Beam rigidity"
A synchrotron:
$\implies$ $h$ synchronous particles moving on reference orbit! To accelerate them and for longitudinal phase focusing around them, apply $E_z$ in rf cavity!
$\implies$ only works with AC field! Why not DC field across cavity gap?
image from A. Chance and N. Pichoff
Require dipole fields to align with increasing momentum to maintain synchronicity!
$$\dot{B}=\frac{\dot{p}}{|q|\rho}$$$\implies$ "cycle": synchrotrons ramp up magnets for acceleration (and back down to receive next beam for acceleration)
Conceptual "flow chart" of synchrotron operation principle:
$\implies$ typically magnetic field ramp $\dot{B}$ is slow enough $\implies$ adiabatic acceleration, particles remain focused around synchronous particle
image from Y. Hao
Particles with higher momentum $\delta = \Delta p/p > 0$ than the reference particle are bent less (larger $p$ $\implies$ larger $\rho$)!
$$\implies d\ell = \left(1 + \frac{x}{\rho(s)}\right) ds$$$\implies$ larger equilibrium orbit around the machine for fixed dipole fields $B$!
Can describe this horizontal offset $x$ due to momentum offset $\delta$ by dispersion function $D_x(s)$ (more details later in transverse dynamics lecture):
$$x(s) = D_x(s) \delta$$Integrating around machine to get full orbit length:
$$\ell_\text{tot} = \oint d\ell = \underbrace{\oint ds}\limits_{\mathop{\equiv} C} + \delta \oint ds\,\frac{D_x(s)}{\rho(s)}$$image by BR84, Wikimedia
Relative difference in path length $\Delta C/C = (\ell_\text{tot} - C)/C$ around the ring compared to synchronous particle is therefore:
$$\frac{\Delta C}{C} = \delta~ \underbrace{\frac{1}{C} \oint ds\,\frac{D_x(s)}{\rho(s)}}\limits_{\mathop{\doteq}\alpha_c} = \alpha_c \frac{\Delta p}{p}$$The momentum compaction factor expresses "how much longer the path length around the ring becomes for higher momenta"!
"Momentum compaction factor"
$\implies$ $\rho=\infty$ in straight sections, $\alpha_c=\cfrac{2\pi\langle D_x \rangle_\text{mean}}{C}$ with the mean value referring to dipole $\mathbf{B}$ field areas only!
Note: $\alpha_c$ is an external property given by the magnet configuration.
How does the revolution period (or arrival time of a particle after one turn) $T_\text{rev}$ change with momentum deviation $\delta$?
$$ T_\text{rev} = \frac{1}{f_\text{rev}} = \frac{C}{\beta c} $$With logarithmic differentiation:
$$\frac{\Delta T_\text{rev}}{T_\text{rev}} = \frac{\Delta C}{C} - \frac{\Delta \beta}{\beta}$$Can find $\Delta\beta$ relation to momentum deviation via total momentum definition $\bigl($and $\gamma=1/\sqrt{1-\beta^2}\bigr)$:
$$p = \beta\gamma m_0 c \implies \frac{\Delta p}{p} = \frac{\Delta\beta}{\beta} + \frac{\Delta\gamma}{\gamma} = \frac{1}{\gamma^2}\cdot \frac{\Delta\beta}{\beta}$$Collecting all terms for the arrival time deviation (the longitudinal drift):
$$\begin{align} \frac{\Delta T_\text{rev}}{T_\text{rev}} &= \frac{\Delta C}{C} - \frac{\Delta \beta}{\beta} \\ &= \alpha_c \frac{\Delta p}{p} - \frac{1}{\gamma^2}\cdot \frac{\Delta p}{p} \equiv \eta \delta \end{align}$$The phase-slip factor expresses "how much arrival time delay a momentum offset causes"!
"Phase-slip factor"
Note: $\eta$ changes with the particle energy via $\gamma$!
The energy gain in the rf cavity,
$$\Delta E|_\text{after} = \Delta E|_\text{before} + q V\cdot \left(\sin\left(\varphi_s - \frac{\omega_\text{rf}z}{\beta c}\right) - \sin(\varphi_s)\right) \quad ,$$and the longitudinal drifting (or phase slippage), $\Delta T_\text{rev} = \eta \delta T_\text{rev}$, form the discrete longitudinal one-turn map or tracking equations (in absence of other energy loss terms such as synchrotron radiation).
Express tracking equations in terms of the phase-space coordinates $(z, \delta)$ without acceleration $\Delta E_{\text{tot},0}=0$: after one turn the longitudinal offset $z=s-\beta ct$ amounts to
$$z=C-\beta c (T_{\text{rev},0} + \Delta T_\text{rev}) = -\beta c \Delta T_\text{rev} \implies z_{n+1}=z_n - \eta C \delta_n $$and with $\delta = \frac{\Delta p}{p_0} = \frac{1}{p_0}\cdot \frac{\Delta E}{\beta c}$,
$$\delta_{n+1} = \delta_n + \cfrac{q V}{\beta c p_0}\cdot\sin\left(\varphi_s - \cfrac{\omega_\text{rf}z_{n+1}}{\beta c}\right) \quad .$$In case of acceleration it is more convenient to use $(z,\Delta p)$, for purely longitudinal simulation models often also $(\varphi,\Delta E_{tot}/\omega_\text{rev})$ for which phase-space area remains invariant even during acceleration.
As long as $\beta c$ changes, the rf frequency needs to be synchronised as
$$\omega_\text{rf}=h\omega_\text{rev}=2\pi h / T_\text{rev} = 2\pi h \beta c/C \quad .$$with the synchronous phase $\varphi_s$ determined by $(\delta p_0)_\text{turn} = \frac{q V}{\beta c}\,sin\bigl(\varphi_s\bigr)$.
Defining the transition energy, $$\gamma_\text{t} \doteq \frac{1}{\sqrt{\alpha_c}} \quad ,$$
(i.e. $\eta = 1/\gamma_\text{t}^2 - 1/\gamma^2$) can distinguish two regimes:
classical regime | relativistic regime |
---|---|
$\eta < 0$ | $ \eta > 0$ |
$\gamma < \gamma_\text{t}$ | $\gamma > \gamma_\text{t}$ |
higher-momentum particles with $\delta>0$ are faster and arrive before synchronous particle | higher-momentum particles with $\delta>0$ have no velocity advantage ($\beta \rightarrow 1$) but longer path to cover and arrive after synchronous particle |
$\implies$ choose $\varphi_s$ with rising slope of $V(\varphi)$ | $\implies$ choose $\varphi_s$ with falling slope of $V(\varphi)$ (i.e. $\pi-\varphi_s$ compared to below transition) |
$\implies$ what happens to phase focusing at $\gamma=\gamma_\text{t}$?
$\gamma<\gamma_\text{t}$ | $\gamma>\gamma_\text{t}$ | |||
---|---|---|---|---|
$\varphi>\varphi_s$ | $\color{blue}{\delta < 0}$ | $\color{orange}{\delta > 0}$ | ||
$\varphi<\varphi_s$ | $\color{orange}{\delta > 0}$ | $\color{blue}{\delta < 0}$ |
plot_rfwave(phi_s=0.5, regime='classical'); # try 'relativistic'
Based on the CERN Proton Synchrotron machine parameters:
The CERN Proton Synchrotron (PS):
Some convenience functions to compute the speed β and the relativistic Lorentz factor γ:
def beta(gamma):
'''Speed β in units of c from relativistic Lorentz factor γ.'''
return np.sqrt(1 - gamma**-2)
def gamma(p):
'''Relativistic Lorentz factor γ from total momentum p.'''
return np.sqrt(1 + (p / (mass * c))**2)
We gather all the machine parameters in a class named Machine
.
A Machine
instance knows
gamma_ref
, or alternatively the momentum p0()
) currently runs,phi_s
eta
, for a particle at a certain momentum p0 + Δpupdate_gamma_ref()
when a turn has passedcharge = e
mass = m_p
class Machine(object):
gamma_ref = #fill me
circumference = #fill me
voltage = #fill me
harmonic = #fill me
alpha_c = #fill me
phi_s = #fill me
def eta(self, deltap):
'''Phase-slip factor for a particle.'''
p = self.p0() + deltap
return self.alpha_c - gamma(p)**-2
def p0(self):
'''Momentum of synchronous particle.'''
return self.gamma_ref * beta(self.gamma_ref) * mass * c
def update_gamma_ref(self):
'''Advance the energy of the synchronous particle
according to the synchronous phase by one turn.
'''
deltap_per_turn = charge * self.voltage / (
beta(self.gamma_ref) * c) * np.sin(self.phi_s)
new_p0 = self.p0() + deltap_per_turn
self.gamma_ref = gamma(new_p0)
To compute a synchronous phase, you may use these convenience functions to compute the arcsin on the interval of [-π/2,π/2], remember you may likely want to find a synchronous phase on [0,π]!
def deltap_per_turn(Bdot, rho, circumference, p0):
Trev = circumference / (beta(gamma(p0)) * c)
return Bdot * rho * charge * Trev
def compute_phi_s(deltap_per_turn, p0, voltage):
'''Return *first* positive phase which matches the
given Δp/turn on the interval [0, π/2].
Do check whether you need to use π-φ_s for stability!
'''
return np.arcsin(
deltap_per_turn * beta(gamma(p0)) * c / (charge * voltage)
)
The tracking equations for the longitudinal plane read:
$$\left\{\begin{array}\, z_{n+1} &= z_n - \eta C \left(\cfrac{\Delta p}{p_0}\right)_n \\ (\Delta p)_{n+1} &= (\Delta p)_n + \cfrac{q V}{(\beta c)_n}\cdot\left(\sin\left(\varphi_s - \cfrac{2\pi}{C}\cdot hz_{n+1}\right) - \sin(\varphi_s)\right) \end{array}\right.$$We implement them with a leapfrog (half-drift + kick + half-drift) scheme.
def track_one_turn(z_n, deltap_n, machine):
m = machine
# half drift
z_nhalf = z_n - m.eta(deltap_n) * deltap_n / m.p0() * m.circumference / 2
# rf kick
amplitude = charge * m.voltage / (beta(gamma(m.p0())) * c)
phi = m.phi_s - m.harmonic * 2 * np.pi * z_nhalf / m.circumference
m.update_gamma_ref()
deltap_n1 = deltap_n + amplitude * (np.sin(phi) - np.sin(m.phi_s))
# half drift
z_n1 = z_nhalf - m.eta(deltap_n1) * deltap_n1 / m.p0() * m.circumference / 2
return z_n1, deltap_n1
The Machine
instance will keep track of the reference energy during the tracking by calling update_gamma_ref()
once per turn:
m = Machine()
Particles are tracked by their two longitudinal coordinates $(z, \Delta p)$. The initial values are stored in z_ini
and deltap_ini
as numpy.array
s. These should have N
entries for $N$ particles.
(You may use numpy helper functions such as np.linspace
or np.arange
for convenient initialisation!)
n_turns = 1000
deltap_ini = np.array([0.]) #np.linspace(start, end, 20)
z_ini = np.array([0.]) #np.zeros_like(deltap_ini)
N = len(z_ini)
assert (N == len(deltap_ini))
To store the coordinate values during tracking, prepare some n_turns
long 2D arrays with N
entries per turn:
z = np.zeros((n_turns, N), dtype=np.float64)
deltap = np.zeros_like(z)
z[0] = z_ini
deltap[0] = deltap_ini
We would also like to store the reference gamma for each turn:
gammas = np.zeros(n_turns, dtype=np.float64)
gammas[0] = m.gamma_ref
Let's go, here's the tracking loop over the number of turns n_turns
!
for i_turn in range(1, n_turns):
z[i_turn], deltap[i_turn] = track_one_turn(z[i_turn - 1], deltap[i_turn - 1], m)
gammas[i_turn] = m.gamma_ref
plt.plot(gammas)
plt.xlabel('Turns')
plt.ylabel('$\gamma_{ref}$')
plt.scatter(z, deltap / m.p0(), marker='.', s=0.5)
plt.xlabel('$z$ [m]')
plt.ylabel('$\Delta p/p_0$')